The basic difficulties associated with the numerical solution of the incompressible Navier-Stokes equations in primitive variables are identified and analysed. These difficulties, namely the lack of self-adjointness of the flow equations and the requirement of choosing compatible interpolations for velocity and pressure, are addressed with the development of consistent Petrov-Galerkin formulations. In particular, the solution of incompressible viscous flow problems using simple equal order interpolation for all variables becomes possible .