Forecasting Quarterly Brazilian GDP Growth Rate with Linear and Nonlinear Diffusion Index Models Documento uri icon

  •  
  • Visão geral
  •  
  • Pesquisas
  •  
  • Identidade
  •  
  • Ver todos
  •  

tipo

  • doctoral thesis

abstrato

  • Esta Tese estuda modelos lineares e nÃo lineares de Ãndices de difusÃo para prever, em um perÃodo à frente, a taxa de crescimento trimestral do PIB brasileiro. Os modelos de Ãndice de difusÃo assemelham-se aos modelos de fatores dinÃmicos. Estes fatores sÃo variÃveis nÃo observÃveis e representam uma caracterÃstica em comum Ãs variÃveis explicativas, permitindo a reduÃÃo significativa do nÃmero dessas no modelo economÃtrico proposto para atender o objetivo principal deste trabalho. AlÃm de parcimoniosos, os modelos utilizados nesta Tese se propÃem a capitar as fases de recessÃo e expansÃo econÃmica, atravÃs de modelos nÃo lineares do tipo Threshold Effect e Markov-Switching, servindo o primeiro destes dois para testar a hipÃtese de que existe nÃo linearidades na variÃvel sob estudo.
  • The present study uses linear and non-linear diffusion index models to produce one-stepahead forecast of quarterly Brazilian GDP growth rate. Diffusion index models are like dynamic factors models. These factors are latent variables that represent a common property from the explanatory variables, then allowing a considerably reduction of its number in econometric models elaborated to attend the main objective of this work. The non-linear diffusion index models used in this thesis are not only parsimonious ones, but also they try to capture economic cycles using for this goal a Threshold diffusion index model and a Markov-Switching diffusion index model. The former is used, besides for forecasting purpose, also to test if there is a non-linear pattern in the quarterly Brazilian GDP growth rate.

data de publicação

  • 2005-01-01